<table>
<thead>
<tr>
<th>Target ID</th>
<th>GO.13081</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Organism</td>
<td>Arabidopsis thaliana</td>
</tr>
<tr>
<td>Target Name</td>
<td>At3g17210.1</td>
</tr>
<tr>
<td>PDB Entry</td>
<td>1Q53 (replaced 1NWJ)</td>
</tr>
<tr>
<td>Deposition</td>
<td>06-Aug-2003</td>
</tr>
<tr>
<td>BMRB Entry</td>
<td>5843</td>
</tr>
<tr>
<td>Deposition</td>
<td>07-Aug-2003</td>
</tr>
<tr>
<td>Function</td>
<td>unknown (FF/Refine: 2Q3P)</td>
</tr>
<tr>
<td>Produced From</td>
<td>E. coli Rosetta(DE3)/pLysS</td>
</tr>
<tr>
<td>Structure by NMR</td>
<td>Restraints/Residue: 18.4</td>
</tr>
<tr>
<td></td>
<td>No. of Residues: 224</td>
</tr>
<tr>
<td></td>
<td>Backbone RMSD: 0.95 Å</td>
</tr>
<tr>
<td>Data Collected At</td>
<td>Medical College of Wisconsin, Milwaukee, WI</td>
</tr>
<tr>
<td>Authors</td>
<td>B.L. Lytle, F.C. Peterson, B.F. Volkman</td>
</tr>
</tbody>
</table>

Structural Features

The most similar structure in the PDB to homodimeric (112 residues/monomer) At3g17210.1 shows 35% identity over 108 aligned residues (1RJJ). Additionally, ActVA-Orf6, a bacterial monooxygenase from *Streptomyces coelicolor* (1LQ9) and a protein of unknown function from *Thermus thermophilus* (1IUJ) show structural similarity. Although the two proteins, ActVA-Orf6 and At3g17210.1, share only 10% sequence identity, their tertiary and quaternary structures are very similar. Because none of the active site residues of ActVA-Orf6 are retained in At3g17210.1, the latter protein probably has a different function, which remains to be elucidated. This target aligns to Pfam-B domain of Pfam-B_3438 over residues 8–102.

Percent Identity with Nearest PDB Structure at Time Solved

| Pfam Cluster | 10% over 109 aa (1LQ9) |

Protonet Cluster Size : Structures in PDB

| B_3438 | 67 : 0 |

Center for Eukaryotic Structural Genomics (CESG), University of Wisconsin-Madison Biochemistry Department, 433 Babcock Drive, Madison, WI 53706-1549; phone: 608.263.2183; fax: 608.890.1942; email: cesginfo@biochem.wisc.edu; website: http://www.uwsstructuralgenomics.org. This research funded by NIH / NIGMS Protein Structure Initiative grants U54 GM074901 and P50 GM064598.